If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+6u=0
a = 4; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·4·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*4}=\frac{-12}{8} =-1+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*4}=\frac{0}{8} =0 $
| -3(2x+1)+7x=16 | | 3h+h=8 | | -22-13x+11x=42 | | 10/4=n/5 | | 12x-40=5x+30 | | 6d=0.0456 | | -14x-12=-26 | | 2x+8=4x+-6 | | n+16=45-20 | | 56=8h+16 | | 8/3=b/1.2 | | 1/3y=4*5/6 | | -4(3x+3)+13x=5 | | 4x-8=12+2x | | y=6.79(2)^5 | | y=6.792)^5 | | 9-7z=8z+8 | | 3t=7t-23 | | –3.1u=7.75 | | 2p2−9p+5=0 | | -4+3x-(x-2)=3x+8 | | 9x-4x-65=50 | | 4+9x=10+3x | | -m/1.5=7.5 | | w-3.2=5.6w-3.2+0=5.6+ | | 2.9a=11.6 | | 9m2+5m=0 | | 2-4p=18 | | -94-4x+11x=42 | | -7-2w-9w=0 | | n/6.18+0.6=-0.645 | | h2+4h+3=0 |