If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2=10
We move all terms to the left:
4v^2-(10)=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 112+8x=124+5x | | 3x-9=4x-10,x | | (x+2)2-10=26 | | 7(3x+5)=2(9x–5) | | z2-16z+61=2z-20 | | 3+2xx=8 | | 3x+2-22=22x+52 | | 9u=78 | | 9=7u-12 | | 134=4x+58 | | p+10.5=18.32 | | 12(x+6)=108 | | y÷4=28 | | 5x−8=57 | | d+3.4=13.1 | | 4.25=g-3.12 | | 2(x-7)=-2x-9-x | | -10x+2=-7x-8-x | | 5(2x–11)=0 | | K^3=3k | | 14.5=y+6 | | -2e+9=7-e | | K^3-3k=0 | | 3x-72x+5=6 | | n+5+3n=21 | | 17-6b=-13 | | x-3(4x+1)=4 | | 2(x-5)x=10 | | Y=-3x+86 | | 16x+2x-23=13 | | 5x–2x+4x=3x+24 | | 5x–4=3–2x |