If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+20w+21=0
a = 4; b = 20; c = +21;
Δ = b2-4ac
Δ = 202-4·4·21
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8}{2*4}=\frac{-28}{8} =-3+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8}{2*4}=\frac{-12}{8} =-1+1/2 $
| x2-6x+13=29 | | 2(5x-3)=-10x+3/8 | | -45+y÷7=5 | | 11x^2-72x-24=0 | | x=-10+4 | | 54=1.75x+12.73 | | -3=x-(6-2x | | -6x-11=-51-11x | | 140+0.20x=50+0.50x | | 6-2x=214+11x | | 0.5x=55 | | 6x+2=-185-11x | | -11x-4=-310+7x | | -148+2x-8x=69 | | 6/5=14/3x+2 | | 9.8t^2t=-2 | | -3+11=-8w+51 | | -5x+2+10x-14=9x-2+6 | | -7x-15=4(58+3x) | | 3e-1=19 | | -9x+20=286+5x | | 3(1+4m)=-93 | | -6x-10=-4x+6 | | -4x+17=13-5x | | x-12=9(2-x) | | 17+12x=-221-5x | | 12/35=40/n | | 17+9x=-363-10x | | -11x-3=184 | | 7-9x=27-4x | | -5+9c=10c−6 | | 3x²+9x-210=0 |