4x(12+12x)+8(14+10x)=800

Simple and best practice solution for 4x(12+12x)+8(14+10x)=800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(12+12x)+8(14+10x)=800 equation:



4x(12+12x)+8(14+10x)=800
We move all terms to the left:
4x(12+12x)+8(14+10x)-(800)=0
We add all the numbers together, and all the variables
4x(12x+12)+8(10x+14)-800=0
We multiply parentheses
48x^2+48x+80x+112-800=0
We add all the numbers together, and all the variables
48x^2+128x-688=0
a = 48; b = 128; c = -688;
Δ = b2-4ac
Δ = 1282-4·48·(-688)
Δ = 148480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148480}=\sqrt{1024*145}=\sqrt{1024}*\sqrt{145}=32\sqrt{145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-32\sqrt{145}}{2*48}=\frac{-128-32\sqrt{145}}{96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+32\sqrt{145}}{2*48}=\frac{-128+32\sqrt{145}}{96} $

See similar equations:

| 24=-7(8b+3) | | -3d-5+4=-26 | | -x+102=188 | | 14+11x=2(11x+14)+x | | 3(3+2x)=27 | | 90=3x+9x+12 | | -19=-4h+9h | | A+b=23 | | 6x^2-12x+36=0 | | 0=-16t^2+180t-420 | | 8x+6=2x+37 | | 13x=(4+x)2–3x–(4–x)2 | | 15x+6=-4 | | (3x+1)^=49 | | (k+2)÷3=(k-4)÷5 | | 6x+(-13)=5 | | (k+2)÷3=(k-4(÷5 | | 2.14x-12.16=-5.76 | | 6x(-13)=5 | | x/3.1=-5.6 | | 3(9-3x)=54 | | 4x-17=21 | | 7x15-9x=5 | | 9x=8+-1 | | 7(-6x+7)=-329 | | 7(8+6x)=-364 | | 6x+7-3x-16=180 | | -31-(3x-6)=10 | | -6(-8+3x)=-60 | | (x+7)=(2x-6) | | 0.4t+0.2=-0.4+2 | | -2x+2+4x=10 |

Equations solver categories