4x(2x+5)+-11=4x+-3

Simple and best practice solution for 4x(2x+5)+-11=4x+-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(2x+5)+-11=4x+-3 equation:



4x(2x+5)+-11=4x+-3
We move all terms to the left:
4x(2x+5)+-11-(4x+-3)=0
We add all the numbers together, and all the variables
4x(2x+5)-(4x-3)-11+=0
We add all the numbers together, and all the variables
4x(2x+5)-(4x-3)=0
We multiply parentheses
8x^2+20x-(4x-3)=0
We get rid of parentheses
8x^2+20x-4x+3=0
We add all the numbers together, and all the variables
8x^2+16x+3=0
a = 8; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·8·3
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{10}}{2*8}=\frac{-16-4\sqrt{10}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{10}}{2*8}=\frac{-16+4\sqrt{10}}{16} $

See similar equations:

| 180=3x+20+(2x-10) | | 2x-5x+8=x-8 | | -r-8(-4+3r)=-36-8r | | k-2.1/7=3.4 | | 2x+x+10-x=180 | | 4.75x+46=76 | | 2x^2+5x-31=0 | | 13x-2+15x-2=180 | | 9.48+3.3w=7.24+2.5w | | 180=x+20+(5x+10) | | 8/9z=32 | | 2.4x-4.9=6.5 | | 3x+214.12=462.23 | | 90=x+20+(x+10) | | 6x−5=2x+13 | | 10=m18 | | 4x-35=90 | | x+-16=-16 | | 11y+11y=220 | | Y=10x=18 | | 10x²-2x=0 | | (Y+15)+(2y-5)=90 | | 180=2x+(x+30) | | 4x-35(3×+10)=90 | | 5.8+8h+2.29=-6.7h+8.09 | | 180=2x+(x=30) | | -9=-5+r3r3 | | 4x-35(3×+10)=180 | | 5-2x(x=4) | | 3(x–12)+3x=396 | | 82=16t^2 | | 5-2x4=x |

Equations solver categories