4x(2x-2)=6(3x+2)

Simple and best practice solution for 4x(2x-2)=6(3x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(2x-2)=6(3x+2) equation:



4x(2x-2)=6(3x+2)
We move all terms to the left:
4x(2x-2)-(6(3x+2))=0
We multiply parentheses
8x^2-8x-(6(3x+2))=0
We calculate terms in parentheses: -(6(3x+2)), so:
6(3x+2)
We multiply parentheses
18x+12
Back to the equation:
-(18x+12)
We get rid of parentheses
8x^2-8x-18x-12=0
We add all the numbers together, and all the variables
8x^2-26x-12=0
a = 8; b = -26; c = -12;
Δ = b2-4ac
Δ = -262-4·8·(-12)
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{265}}{2*8}=\frac{26-2\sqrt{265}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{265}}{2*8}=\frac{26+2\sqrt{265}}{16} $

See similar equations:

| 11+1.1z=3.3 | | 3x+20=13x-90x= | | -5a+3+6a=10-21 | | 2x-10+30+20=180 | | q11=1 | | 15x+10=32x-4 | | x+0.08x=68149 | | -5a+3+6a=10-20 | | -3/5+a=1/5 | | H(x)=-0.75x+42 | | 2x-2=x+2x= | | 6•(x-9)=30 | | -2(a+3)-a=6 | | 17x+4=-2+19x | | 4+4x-11=-32 | | 6t-185=3t/4+4 | | -5/3+5/7x=4/21 | | 1/2(6x+10)=7(3/7x–2) | | 5x=3x+8x= | | f+12=22 | | -5/4x-4=-11/9 | | 50+50+x+10=180 | | 3x+1÷2=4 | | 3b-37=3b/4+8 | | 24=3^1n+8–3 | | 60+5x=84-2x | | 50+x+10+50=180 | | 24=3^x+8–3 | | 3x+1÷x=4 | | -11/9=-5/4x-4 | | 3r/4+9=5r-144 | | 24=3^n+8–3 |

Equations solver categories