4x(3x-1)=11x-3(x-4)

Simple and best practice solution for 4x(3x-1)=11x-3(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(3x-1)=11x-3(x-4) equation:



4x(3x-1)=11x-3(x-4)
We move all terms to the left:
4x(3x-1)-(11x-3(x-4))=0
We multiply parentheses
12x^2-4x-(11x-3(x-4))=0
We calculate terms in parentheses: -(11x-3(x-4)), so:
11x-3(x-4)
We multiply parentheses
11x-3x+12
We add all the numbers together, and all the variables
8x+12
Back to the equation:
-(8x+12)
We get rid of parentheses
12x^2-4x-8x-12=0
We add all the numbers together, and all the variables
12x^2-12x-12=0
a = 12; b = -12; c = -12;
Δ = b2-4ac
Δ = -122-4·12·(-12)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{5}}{2*12}=\frac{12-12\sqrt{5}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{5}}{2*12}=\frac{12+12\sqrt{5}}{24} $

See similar equations:

| 3x+x+3x+x=36 | | 3(x+4)-2x-8=2+9x+18 | | 167=-x+219 | | 2m+7=m+3+10 | | 9-m/4=-12 | | 4=x-(-17) | | 1−3z8=10−2z10;z=−5 | | 182/3.5=x/5 | | -y+101=259 | | -37+6x=-7(-5x-3) | | (D+m)A=2N | | x/3-21=15 | | 5(x+1)=7(x-3) | | -6=8^h-3 | | -2+6(2+x)=5x+4 | | 22m-20=2m | | 2=7b4 | | 2=7b/4 | | 2w−w=11 | | 10=1/2x+2x | | 60(x+4)=600 | | 4x9=30 | | 5x+4*3=27 | | 25=4+3f | | 12/35=18/z | | y+20=49 | | 7y−5y=12 | | 4y^2+3=13y | | 12(y-18)/6=14 | | 3(p-1)=2p+9 | | 16=4s-8 | | 9=(2x-5)/5 |

Equations solver categories