4x(3x-3)=2(6x+1)

Simple and best practice solution for 4x(3x-3)=2(6x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(3x-3)=2(6x+1) equation:


Simplifying
4x(3x + -3) = 2(6x + 1)

Reorder the terms:
4x(-3 + 3x) = 2(6x + 1)
(-3 * 4x + 3x * 4x) = 2(6x + 1)
(-12x + 12x2) = 2(6x + 1)

Reorder the terms:
-12x + 12x2 = 2(1 + 6x)
-12x + 12x2 = (1 * 2 + 6x * 2)
-12x + 12x2 = (2 + 12x)

Solving
-12x + 12x2 = 2 + 12x

Solving for variable 'x'.

Reorder the terms:
-2 + -12x + -12x + 12x2 = 2 + 12x + -2 + -12x

Combine like terms: -12x + -12x = -24x
-2 + -24x + 12x2 = 2 + 12x + -2 + -12x

Reorder the terms:
-2 + -24x + 12x2 = 2 + -2 + 12x + -12x

Combine like terms: 2 + -2 = 0
-2 + -24x + 12x2 = 0 + 12x + -12x
-2 + -24x + 12x2 = 12x + -12x

Combine like terms: 12x + -12x = 0
-2 + -24x + 12x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-1 + -12x + 6x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-1 + -12x + 6x2)' equal to zero and attempt to solve: Simplifying -1 + -12x + 6x2 = 0 Solving -1 + -12x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -0.1666666667 + -2x + x2 = 0 Move the constant term to the right: Add '0.1666666667' to each side of the equation. -0.1666666667 + -2x + 0.1666666667 + x2 = 0 + 0.1666666667 Reorder the terms: -0.1666666667 + 0.1666666667 + -2x + x2 = 0 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + -2x + x2 = 0 + 0.1666666667 -2x + x2 = 0 + 0.1666666667 Combine like terms: 0 + 0.1666666667 = 0.1666666667 -2x + x2 = 0.1666666667 The x term is -2x. Take half its coefficient (-1). Square it (1) and add it to both sides. Add '1' to each side of the equation. -2x + 1 + x2 = 0.1666666667 + 1 Reorder the terms: 1 + -2x + x2 = 0.1666666667 + 1 Combine like terms: 0.1666666667 + 1 = 1.1666666667 1 + -2x + x2 = 1.1666666667 Factor a perfect square on the left side: (x + -1)(x + -1) = 1.1666666667 Calculate the square root of the right side: 1.08012345 Break this problem into two subproblems by setting (x + -1) equal to 1.08012345 and -1.08012345.

Subproblem 1

x + -1 = 1.08012345 Simplifying x + -1 = 1.08012345 Reorder the terms: -1 + x = 1.08012345 Solving -1 + x = 1.08012345 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = 1.08012345 + 1 Combine like terms: -1 + 1 = 0 0 + x = 1.08012345 + 1 x = 1.08012345 + 1 Combine like terms: 1.08012345 + 1 = 2.08012345 x = 2.08012345 Simplifying x = 2.08012345

Subproblem 2

x + -1 = -1.08012345 Simplifying x + -1 = -1.08012345 Reorder the terms: -1 + x = -1.08012345 Solving -1 + x = -1.08012345 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = -1.08012345 + 1 Combine like terms: -1 + 1 = 0 0 + x = -1.08012345 + 1 x = -1.08012345 + 1 Combine like terms: -1.08012345 + 1 = -0.08012345 x = -0.08012345 Simplifying x = -0.08012345

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.08012345, -0.08012345}

Solution

x = {2.08012345, -0.08012345}

See similar equations:

| 12-(4m+6)=3+3m-11 | | 3(t-1)=9+r | | -28-2*4-4=-28 | | 19n=4+18n | | 4t(2t-1)+3t=8-t | | 7X+7+6X-9= | | 5a+22=156 | | 7x-4=0 | | 3n+4n=6n-3 | | 15=t-2 | | p(x)=x^2+4 | | 10x-3=x-3 | | 13(t-6)+8t=7(3t+4)-9 | | 2x+2x=61-21 | | 7y=98 | | 10-8x-7-7x=6 | | x/4=x+9/6.25 | | 4(2x-3)=-5(x+5) | | 5x+8-3x=24 | | 0.5X+2=8 | | p-17=6 | | (-2x*2)-(16x)-30=0 | | 8x^2-8x=1 | | x(x-3)=17+x*x | | -2x*2-30=0 | | (x/4-x/3-2/3)/5=(x-3)/2 | | -5=x+3 | | 15.99-0.98m=294.31 | | (n+1)+(n+2)=-50 | | 15.99-0.98=294.31 | | 3y+(3y-4)=7y-3(y-10) | | -w^2=5w |

Equations solver categories