If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x(6x+2)-2(6+x)-20=12(1+2x)-2x
We move all terms to the left:
4x(6x+2)-2(6+x)-20-(12(1+2x)-2x)=0
We add all the numbers together, and all the variables
4x(6x+2)-2(x+6)-(12(2x+1)-2x)-20=0
We multiply parentheses
24x^2+8x-2x-(12(2x+1)-2x)-12-20=0
We calculate terms in parentheses: -(12(2x+1)-2x), so:We add all the numbers together, and all the variables
12(2x+1)-2x
We add all the numbers together, and all the variables
-2x+12(2x+1)
We multiply parentheses
-2x+24x+12
We add all the numbers together, and all the variables
22x+12
Back to the equation:
-(22x+12)
24x^2+6x-(22x+12)-32=0
We get rid of parentheses
24x^2+6x-22x-12-32=0
We add all the numbers together, and all the variables
24x^2-16x-44=0
a = 24; b = -16; c = -44;
Δ = b2-4ac
Δ = -162-4·24·(-44)
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{70}}{2*24}=\frac{16-8\sqrt{70}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{70}}{2*24}=\frac{16+8\sqrt{70}}{48} $
| x÷⅔=4/3 | | 4x(6x+2)-2(6+x)-20=12(1+2 | | y^-4+y^-2-42=0 | | 8x-5=5+5 | | (x-1)/(4)=-2 | | p=2/4 | | (x-2)^2=2x^2-1 | | 1,5x+7=13 | | 5½-2⅖=a | | ((4-3x)^1/2)-8=x | | 2b+-5=11 | | 5z-16+6z=0 | | –2j+10j=8j | | 13=2n+5 | | -19=-11+4q | | -7=c/2-9 | | 7p=-10 | | -16(d+1)=-21 | | 31 5÷(z−1 2)=22 3÷(z+1 3) | | n/10+2=27 | | X^-16x+48=0 | | 20=5x+-13+6x | | 14x^2-5x-12=0 | | 4^2x+5=30 | | x/150+x/240=1 | | X²-9x-30=0 | | 3s^2-5s=1 | | 5(3x-2)=7(2x-1x) | | 5(3x–2)=7(2x–1) | | 5+11=g=4 | | 5x-18+8x+3=180 | | k-7k=3|-6k-8)+5(-3k-6) |