4x(7/2+x)=31

Simple and best practice solution for 4x(7/2+x)=31 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(7/2+x)=31 equation:



4x(7/2+x)=31
We move all terms to the left:
4x(7/2+x)-(31)=0
Domain of the equation: 2+x)!=0
We move all terms containing x to the left, all other terms to the right
x)!=-2
x!=-2/1
x!=-2
x∈R
We add all the numbers together, and all the variables
4x(+x+7/2)-31=0
We multiply parentheses
4x^2+28x^2-31=0
We add all the numbers together, and all the variables
32x^2-31=0
a = 32; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·32·(-31)
Δ = 3968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3968}=\sqrt{64*62}=\sqrt{64}*\sqrt{62}=8\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{62}}{2*32}=\frac{0-8\sqrt{62}}{64} =-\frac{8\sqrt{62}}{64} =-\frac{\sqrt{62}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{62}}{2*32}=\frac{0+8\sqrt{62}}{64} =\frac{8\sqrt{62}}{64} =\frac{\sqrt{62}}{8} $

See similar equations:

| -4(5x+5)=5/3(3x-12) | | 22v-13=12v-23 | | -3/4(12x-8)=2x+3x-4 | | -400=-7(1+8x)-1 | | 10a-24=17a+46 | | 9x-5(.5x-2)=23 | | 6w+264-67+8=363787 | | 2=x-4/6 | | 14r-15=16r-27 | | 8y-1=55 | | 29o+22=20o+67 | | 3y-2+y=19+4y+3y | | X+x+2+x+4+x+6=308 | | 13f+9=14f+10 | | 2a+18=0 | | X+1=15-x | | -32+5=2z+5 | | 11x=13(19-x)=209 | | 7m-3(m+4)+10=6 | | x+x+2+x+4+6=308 | | 2(6+x)=14+2x | | 7-2a-5-14=-2+3a | | 0.5t+0.25(t+16)=4+0.25t | | 8a-10a^2=0 | | (4-x)^2=15 | | 2d+24=8d | | 3x-5(2x+4)=1 | | 5x+9=85 | | 10k-63=3k | | 8y+6=5/12 | | 4.1x+58.6=5.6-6.5x | | 5+5+s=12 |

Equations solver categories