4x(9x-3)=(2x+4)

Simple and best practice solution for 4x(9x-3)=(2x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(9x-3)=(2x+4) equation:



4x(9x-3)=(2x+4)
We move all terms to the left:
4x(9x-3)-((2x+4))=0
We multiply parentheses
36x^2-12x-((2x+4))=0
We calculate terms in parentheses: -((2x+4)), so:
(2x+4)
We get rid of parentheses
2x+4
Back to the equation:
-(2x+4)
We get rid of parentheses
36x^2-12x-2x-4=0
We add all the numbers together, and all the variables
36x^2-14x-4=0
a = 36; b = -14; c = -4;
Δ = b2-4ac
Δ = -142-4·36·(-4)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{193}}{2*36}=\frac{14-2\sqrt{193}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{193}}{2*36}=\frac{14+2\sqrt{193}}{72} $

See similar equations:

| x²=225 | | s(1-s)=24 | | -12y-70=-34 | | 3-q=-25 | | 176x=121+x^2 | | 145/100=n/210 | | Y=-1/2x+1/4 | | 15y-55=-10 | | 1/2(h^2-6)+8=0 | | 46+7y=1+2y | | (x+3)(–)=x2–x–12 | | 3x/5+X/9=-1 | | 17-1/5x=-3 | | (x-1.5)^2=0 | | 8(2x+3x+2)=-4x+.148 | | 15-3y=2y+30 | | 3x^2+104=-8 | | 12x-3x+4=5x+16 | | 7a-4=3a+16 | | 2(x+4)=2x+8= | | 4(3x+6)=-42+54 | | 2.5(-3p-8)+5p=4(2.25p+55)+15.5 | | 17^6c+3=48 | | 4p-5=p+34 | | 4+3p=25 | | 3f-7=38 | | 3g+7=31 | | 2.5x+0.6=4.8 | | (70-6)+(9y-5)=180 | | 2x-99=99 | | 82x=22+-2+72x | | (x-2)+x+2x=110 |

Equations solver categories