4x(x+30)=(5x+-25)

Simple and best practice solution for 4x(x+30)=(5x+-25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x+30)=(5x+-25) equation:



4x(x+30)=(5x+-25)
We move all terms to the left:
4x(x+30)-((5x+-25))=0
We add all the numbers together, and all the variables
4x(x+30)-((5x-25))=0
We multiply parentheses
4x^2+120x-((5x-25))=0
We calculate terms in parentheses: -((5x-25)), so:
(5x-25)
We get rid of parentheses
5x-25
Back to the equation:
-(5x-25)
We get rid of parentheses
4x^2+120x-5x+25=0
We add all the numbers together, and all the variables
4x^2+115x+25=0
a = 4; b = 115; c = +25;
Δ = b2-4ac
Δ = 1152-4·4·25
Δ = 12825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12825}=\sqrt{225*57}=\sqrt{225}*\sqrt{57}=15\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(115)-15\sqrt{57}}{2*4}=\frac{-115-15\sqrt{57}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(115)+15\sqrt{57}}{2*4}=\frac{-115+15\sqrt{57}}{8} $

See similar equations:

| 3(8x+8)=21x+56 | | x/7+2=17 | | 2/3x-6=1/2x+2 | | 0=0.4x | | 1/4(2x-16)=-6 | | 7=3x+11-8x+4x | | x/6=20.7/5.4 | | –3x+–10x+5=–8 | | 7x+9+2x=-18 | | –3q+–10q+5=–8 | | -1=-16p-49 | | b/9=1/72 | | -1=-16p=49 | | 7=3x+11-8x+4 | | 3n-5=-65 | | 8n–16=24 | | -20=x/2-4 | | 14x+27=15x+93 | | 2x-√4x^2-15=3 | | -3-2e-7=16 | | -3-2c-7=16 | | 5(x*(3^6))=4‰*4 | | 90x+50=90x+38+12 | | 4+8h=-68 | | 5x+3x-8=9+6x-5 | | 8x-22+44=2(x-17) | | 8x-22+44=2(x-17)) | | 20=1p+5 | | 12q^2=17+5 | | 4(2n)=-32 | | 3x+9=2x-10=4x-8 | | 20=6m-5 |

Equations solver categories