4x(x+4)=(3x+8)(x+4)

Simple and best practice solution for 4x(x+4)=(3x+8)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x+4)=(3x+8)(x+4) equation:



4x(x+4)=(3x+8)(x+4)
We move all terms to the left:
4x(x+4)-((3x+8)(x+4))=0
We multiply parentheses
4x^2+16x-((3x+8)(x+4))=0
We multiply parentheses ..
4x^2-((+3x^2+12x+8x+32))+16x=0
We calculate terms in parentheses: -((+3x^2+12x+8x+32)), so:
(+3x^2+12x+8x+32)
We get rid of parentheses
3x^2+12x+8x+32
We add all the numbers together, and all the variables
3x^2+20x+32
Back to the equation:
-(3x^2+20x+32)
We add all the numbers together, and all the variables
4x^2+16x-(3x^2+20x+32)=0
We get rid of parentheses
4x^2-3x^2+16x-20x-32=0
We add all the numbers together, and all the variables
x^2-4x-32=0
a = 1; b = -4; c = -32;
Δ = b2-4ac
Δ = -42-4·1·(-32)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12}{2*1}=\frac{16}{2} =8 $

See similar equations:

| 7(x-3)+1=5x-14 | | 9x=9-18 | | 8t-3=3t+27 | | 9x=18-9 | | 5x+3+10x-5+17x-16=x | | -5y(y+3)(y+7)=0 | | -7d+8-4d=-33 | | 12x-12x-9=-9 | | 7(x+4)-3x=-2(x-8) | | 5(x+6)-3x=3(x+10) | | 2(x+2)=2x-1 | | -8(x+4)+5x=-23 | | 3(y-3)^2-48=0 | | 12−.75(d+16)=−5 | | 35+5=x | | -6v-29=-4v-5-5(v+1) | | 5/6x–3=5/8x+7 | | 6x+8-3x=-6x+116 | | 8=c-(-11) | | 5/6x–3=5/8x+7. | | 12=y-(-10) | | 2p-5p=-6 | | (x+7)(x-2)=(3x-1)(2x+14) | | 2(x-4)+6x=-64 | | -51=a-50 | | 2(x-4)+6x=-12 | | -n-5=-24 | | 3z/8=4 | | +(.5x+3)=180 | | -29=c+(-31) | | X+(5x+3)=180 | | 33c+5=104 |

Equations solver categories