4x(x+5)+6x+22=2x+5

Simple and best practice solution for 4x(x+5)+6x+22=2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x+5)+6x+22=2x+5 equation:



4x(x+5)+6x+22=2x+5
We move all terms to the left:
4x(x+5)+6x+22-(2x+5)=0
We add all the numbers together, and all the variables
6x+4x(x+5)-(2x+5)+22=0
We multiply parentheses
4x^2+6x+20x-(2x+5)+22=0
We get rid of parentheses
4x^2+6x+20x-2x-5+22=0
We add all the numbers together, and all the variables
4x^2+24x+17=0
a = 4; b = 24; c = +17;
Δ = b2-4ac
Δ = 242-4·4·17
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{19}}{2*4}=\frac{-24-4\sqrt{19}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{19}}{2*4}=\frac{-24+4\sqrt{19}}{8} $

See similar equations:

| ^x+9=x+7 | | a÷6=9 | | (6^x)=209 | | 14x=125 | | -6.5=s/9 | | 6^(x)=209 | | 16^3x-2=(1/4)^5-x | | 6^x=209 | | (a/3)-3=9 | | 12x-4=2x+60 | | 16^3x+1=9^x-3 | | 32x+40=64-16x | | -u/4=47 | | 6x+74/4=-4 | | 7/12x-5/4=9/16x-2/3 | | -48=-v/8 | | 2x+14=12-x | | (7)/(12)x-(5)/(4)=(9)/(16)x-(2)/(3) | | 45=2y+20 | | 8x2+30x+-27=0 | | 13/11=m/14 | | x2+10x+25=12 | | 3x+7=55−3x | | 10/x-2=6/x+5 | | 6-3b-9=b-11 | | 4(12+10n)=4-4n | | 420=2r+10 | | 4x=1275/12.5 | | 4z/7+9=6 | | 52=12x-16 | | 98.53+1y=141.41 | | x=15x20 |

Equations solver categories