If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x(x-1)=2(3-2x)
We move all terms to the left:
4x(x-1)-(2(3-2x))=0
We add all the numbers together, and all the variables
4x(x-1)-(2(-2x+3))=0
We multiply parentheses
4x^2-4x-(2(-2x+3))=0
We calculate terms in parentheses: -(2(-2x+3)), so:We get rid of parentheses
2(-2x+3)
We multiply parentheses
-4x+6
Back to the equation:
-(-4x+6)
4x^2-4x+4x-6=0
We add all the numbers together, and all the variables
4x^2-6=0
a = 4; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·4·(-6)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*4}=\frac{0-4\sqrt{6}}{8} =-\frac{4\sqrt{6}}{8} =-\frac{\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*4}=\frac{0+4\sqrt{6}}{8} =\frac{4\sqrt{6}}{8} =\frac{\sqrt{6}}{2} $
| -3(0.5-x)=4(x-0.4) | | –6+3x=–9 | | 2x^2-24x+60=0 | | (x+4)*(3-10x)=0 | | R+r+r+r+r=5r | | x=2x-90 | | X^3+3=y^2-4 | | 8(4-2x)=6(4+2x) | | 8(4-2x)=6(4+2x0 | | 3x+50=74 | | 2x^2-24x+120=0 | | (х^3-2x^2-5)/(4-x^2)=0 | | 4x^2+18x-80=0 | | 28-x=19 | | (х^3-2x^2-5)/(4-x^2=0 | | x-6=62 | | x(x+15)=300 | | (6x-4)(x+2)=2(11x-19)+2(3x^2-13) | | 5(x-0.4)=-2(0.7-x) | | x(x+1)^(x+2)=72 | | (3x+8)^2-64=0 | | 5x-9=9-x | | x-13=3(x-8) | | (x+4)(3x-2)-(3x-1)(3x+1)=2x(11-3x) | | 4x-1/2=x+7 | | 3/x+2=8/3-x | | x^2=3/5 | | x+5/8=9/10 | | 8x–22=-78 | | x/5+1/4=x/2 | | 45=y-8 | | |5x-1|=6 |