If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x(x-1)=2(6-2x)
We move all terms to the left:
4x(x-1)-(2(6-2x))=0
We add all the numbers together, and all the variables
4x(x-1)-(2(-2x+6))=0
We multiply parentheses
4x^2-4x-(2(-2x+6))=0
We calculate terms in parentheses: -(2(-2x+6)), so:We get rid of parentheses
2(-2x+6)
We multiply parentheses
-4x+12
Back to the equation:
-(-4x+12)
4x^2-4x+4x-12=0
We add all the numbers together, and all the variables
4x^2-12=0
a = 4; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·4·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*4}=\frac{0-8\sqrt{3}}{8} =-\frac{8\sqrt{3}}{8} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*4}=\frac{0+8\sqrt{3}}{8} =\frac{8\sqrt{3}}{8} =\sqrt{3} $
| 24x-40/9x-5=3 | | 3^3(3^2x+4)=1 | | x⁴-45x²+324=0 | | 9z-2(z+5)=5(z+6) | | X+x+10+x/2=60 | | 2/5c−12=2 | | 6y+3=2y+12 | | 0.4=0.15+0.2×x | | 3(6x+4)=-15 | | 3^{16}=9^{2x} | | −3x+1=2x−4 | | -6(5p-2)=4(5-8p) | | (5+)/x=24 | | −4p+3=43 | | t^2+2t+500=0 | | x/27.99426675=12 | | x/18.6628445=15.40 | | -8+5m=-8(1+4m) | | x/18.662=18.25 | | (84+x)/x=15/5 | | 10x-11=12x+3 | | 12+5•3=c | | 7x+5(4(x+1)=17 | | 12+5•3=x | | x/8·x/4=16 | | -2(4+5k)+7(7k-4)=-75 | | 3(y-2)+2/5=1/5 | | 6p=0.6(5p+15 | | 3x/7-4=2x | | 7x^2-5x+32=0 | | r-3+8+4=6+2r | | 4c+3=4-2c |