If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x(x-1)=33
We move all terms to the left:
4x(x-1)-(33)=0
We multiply parentheses
4x^2-4x-33=0
a = 4; b = -4; c = -33;
Δ = b2-4ac
Δ = -42-4·4·(-33)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{34}}{2*4}=\frac{4-4\sqrt{34}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{34}}{2*4}=\frac{4+4\sqrt{34}}{8} $
| (12/x+1)+(9/x-2)=5 | | -18=x|-2-3 | | 3z=z+20 | | (x+2)/3+(x+3)/8=5/6 | | 6x+53=-25 | | -126=-35+7x | | y+10y^-1=7 | | 2x-5/9=7x+8/9 | | 2(x)+2(2x+8)=124 | | 34-5p-1=4 | | 4+5p-1=34 | | 2x2+9=1 | | Y=-1/4x^2+3x+6 | | 65=10(3x+1)+x(9-3x+1) | | (10-x)(3x+1)+9x=65 | | 3x+6/6=-3 | | X+1/2=x+3 | | X+4/2x-2=-2 | | 10(2x-3)^4=10 | | 5x+x+18=180 | | 47+64+x=360 | | 129+72+x=360 | | 84+51+x=180 | | 110+40+x=180 | | 110+40+x=360 | | 2(n+4)=5 | | 5/x-4=-2/x+3 | | 31+31+x=180 | | 99+99+x=180 | | 2(2n+5)=6 | | 16=4+3(t-2) | | 0.99^x=0.01 |