4x(x-2)=4+2x(x-1)

Simple and best practice solution for 4x(x-2)=4+2x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x-2)=4+2x(x-1) equation:



4x(x-2)=4+2x(x-1)
We move all terms to the left:
4x(x-2)-(4+2x(x-1))=0
We multiply parentheses
4x^2-8x-(4+2x(x-1))=0
We calculate terms in parentheses: -(4+2x(x-1)), so:
4+2x(x-1)
determiningTheFunctionDomain 2x(x-1)+4
We multiply parentheses
2x^2-2x+4
Back to the equation:
-(2x^2-2x+4)
We get rid of parentheses
4x^2-2x^2-8x+2x-4=0
We add all the numbers together, and all the variables
2x^2-6x-4=0
a = 2; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·2·(-4)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{17}}{2*2}=\frac{6-2\sqrt{17}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{17}}{2*2}=\frac{6+2\sqrt{17}}{4} $

See similar equations:

| -0.4=g/9-0.9 | | 41=w/4+35 | | 4n-2n=-60 | | -6(-3x-1)-3x+2=-1 | | 3(j-59)=78 | | 1/3(9x+6)=3x-2 | | x−1=3x−7 | | 3(y-70)=33 | | 2y+3-3y=9-4y | | 81+37=l | | 8x2=10 | | 2/3*3x+6)=4x+3 | | 17(4-z)6z=-20 | | -(1+4x)=-17 | | x=(5x)+16 | | 0=-16t(2)+64t | | 80=4x+2 | | 0=-16t(2)+64 | | -m+1+4m=1 | | 6x=3x+20 | | 9x-4+6x=8x+8 | | -x/8+10=-5 | | 8(-5)+b(4)=4 | | 0=-16t(2) | | 91=4k-19 | | 5x+20+6x+16+3x=180 | | 4(2x-9)=212 | | x+(52-45)=6x | | 125-75m+38800=40200-150m | | 15/6x+6=10.5 | | m/6+5=11 | | -5(-5x-2)=-16x-4 |

Equations solver categories