4x(x-4)+2=x2+2(2x+17)

Simple and best practice solution for 4x(x-4)+2=x2+2(2x+17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x-4)+2=x2+2(2x+17) equation:



4x(x-4)+2=x2+2(2x+17)
We move all terms to the left:
4x(x-4)+2-(x2+2(2x+17))=0
We multiply parentheses
4x^2-16x-(x2+2(2x+17))+2=0
We calculate terms in parentheses: -(x2+2(2x+17)), so:
x2+2(2x+17)
We add all the numbers together, and all the variables
x^2+2(2x+17)
We multiply parentheses
x^2+4x+34
Back to the equation:
-(x^2+4x+34)
We get rid of parentheses
4x^2-x^2-16x-4x-34+2=0
We add all the numbers together, and all the variables
3x^2-20x-32=0
a = 3; b = -20; c = -32;
Δ = b2-4ac
Δ = -202-4·3·(-32)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-28}{2*3}=\frac{-8}{6} =-1+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+28}{2*3}=\frac{48}{6} =8 $

See similar equations:

| 64x^2-729=0 | | -15+n=24 | | 1(1/2)+r=3(1/4) | | 16(5x+6)=x^2+8x+30 | | 1/3(26x-169)=1/2(-156+24x) | | 72x-x^2=-66 | | 4x-5(x+10)=126 | | 900xB=1035 | | 24x+32−2.1x=20.9x+30+x+2 | | 6m-4=m+18 | | 8(x+5)=-9x-28 | | 5x-2(4x–3)=6x+9 | | 5c-1=19 | | 2k^+7k+6=0 | | 1-x=0.5x | | 18y-27=10y=25 | | 5x-6=3×-7 | | 1/2x+3=4-1/4x | | 4x3=19 | | 2(2q-5)=36 | | 3=c-7/3 | | 8/9y+3=72 | | x24x+5x+12=11x+24 | | x(.298)+x=721.46 | | 2(3x+6)=3(x-9 | | 7(n+6)=6(7-n) | | x(.298)=721.46 | | 7(n+6(=6(7-n) | | 2×+x/4=3 | | -1/2=x+2/3 | | 1/2(x-8)+4=3/4(x+2) | | 7w=4 |

Equations solver categories