4x(x-6)=2(7+3x)

Simple and best practice solution for 4x(x-6)=2(7+3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(x-6)=2(7+3x) equation:



4x(x-6)=2(7+3x)
We move all terms to the left:
4x(x-6)-(2(7+3x))=0
We add all the numbers together, and all the variables
4x(x-6)-(2(3x+7))=0
We multiply parentheses
4x^2-24x-(2(3x+7))=0
We calculate terms in parentheses: -(2(3x+7)), so:
2(3x+7)
We multiply parentheses
6x+14
Back to the equation:
-(6x+14)
We get rid of parentheses
4x^2-24x-6x-14=0
We add all the numbers together, and all the variables
4x^2-30x-14=0
a = 4; b = -30; c = -14;
Δ = b2-4ac
Δ = -302-4·4·(-14)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{281}}{2*4}=\frac{30-2\sqrt{281}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{281}}{2*4}=\frac{30+2\sqrt{281}}{8} $

See similar equations:

| -22=-7b+3b+6 | | 2y-1/2=3/2 | | 2(6x+1)-7=10x+5 | | 4.5(x)=13.5 | | 6+-4k=18 | | 2x-3=3(x+6) | | 6+4(x-5)=6-5(x-4) | | (2x-10)=(3x-15) | | 1.06(2.22)(9-x)=10 | | 2g+2+5g=65 | | 0.5h=12.5 | | 16.50h=49.50 | | 300=12(x+2) | | 3v^2-20=-11v | | 0.15(x+3)=3(0.01x+0.3)+0.18 | | -6(x-3)=3x+9) | | 54.4=3.2x | | 3+(2/3)x=9 | | 54.4=2x+x*1.2 | | -2/3(x+5)+4(x+5)-10/3(x+5)=0 | | -35.4=w-10.25 | | 650/800=x/400 | | 114=7x+6 | | y^-16y+64=0 | | 2n-12=9n-56 | | X+50=3x+8 | | y^2–16y+64=0 | | 1.06(1.22)(9-x)=10 | | 625/800=x/400 | | 3-2y+y=7 | | 7x-26+5x+10=0 | | 3(2+4x)+2x=48 |

Equations solver categories