4x*4-6x*3-2x*2+4x+42/2x+3=0

Simple and best practice solution for 4x*4-6x*3-2x*2+4x+42/2x+3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x*4-6x*3-2x*2+4x+42/2x+3=0 equation:



4x*4-6x*3-2x*2+4x+42/2x+3=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
4x+4x*4-6x*3-2x*2+42/2x+3=0
Wy multiply elements
4x+16x-18x-4x+42/2x+3=0
We multiply all the terms by the denominator
4x*2x+16x*2x-18x*2x-4x*2x+3*2x+42=0
Wy multiply elements
8x^2+32x^2-36x^2-8x^2+6x+42=0
We add all the numbers together, and all the variables
-4x^2+6x+42=0
a = -4; b = 6; c = +42;
Δ = b2-4ac
Δ = 62-4·(-4)·42
Δ = 708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{708}=\sqrt{4*177}=\sqrt{4}*\sqrt{177}=2\sqrt{177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{177}}{2*-4}=\frac{-6-2\sqrt{177}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{177}}{2*-4}=\frac{-6+2\sqrt{177}}{-8} $

See similar equations:

| 8x-41=3x+35 | | 3v-2=2+v/4 | | k-1-4(2k-9)=0 | | x+3+4x-6=0 | | 21=-y/4 | | v+9/3=8+2v | | x+9=1x | | 6-5x=3x+12 | | 6/7=4x | | -12=-x/3 | | -16=-15/16(4/5q+32/3 | | 3^{4x-1}=27^{x+2} | | 1=0.3x−0.6x−5 | | 2^t=23.4 | | 11-2(8+3p)=7p | | (5x+2)+(25x-8)=0 | | 7(x-2)/(x-3)+(13/×)=-13/×(×-3) | | 258=203-u | | 5p-14=8p+4. | | 3x+26=5(x+8) | | (x-3)^2/2-x+x^2=x-(x-2) | | 6x-3x+26=5(x+8 | | (x-3)^2/2-x+^2=x-(x-2) | | 180=7x+6x+4x | | 5z+z+3=z+3+1 | | 3t=t+50 | | 4t=t+30 | | $25.00-k=$8.70 | | -2.5+w=2.7 | | 6u=u+5 | | (x-3)^2(2x+1)^3+(x-3)^3(2x+1)^2=0 | | 22b-17=12b+8 |

Equations solver categories