4x+(2x(110-x))=360

Simple and best practice solution for 4x+(2x(110-x))=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+(2x(110-x))=360 equation:



4x+(2x(110-x))=360
We move all terms to the left:
4x+(2x(110-x))-(360)=0
We add all the numbers together, and all the variables
4x+(2x(-1x+110))-360=0
We calculate terms in parentheses: +(2x(-1x+110)), so:
2x(-1x+110)
We multiply parentheses
-2x^2+220x
Back to the equation:
+(-2x^2+220x)
We get rid of parentheses
-2x^2+220x+4x-360=0
We add all the numbers together, and all the variables
-2x^2+224x-360=0
a = -2; b = 224; c = -360;
Δ = b2-4ac
Δ = 2242-4·(-2)·(-360)
Δ = 47296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{47296}=\sqrt{64*739}=\sqrt{64}*\sqrt{739}=8\sqrt{739}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(224)-8\sqrt{739}}{2*-2}=\frac{-224-8\sqrt{739}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(224)+8\sqrt{739}}{2*-2}=\frac{-224+8\sqrt{739}}{-4} $

See similar equations:

| 2(3x+5)=8x-10 | | 7x-22=23 | | 2/3x–9=1/3x | | 0.32*0.2x+x=1400 | | 3y5=-2 | | ∠A=x+93∘∠B=x+93 | | 5n^2-4n-33=0 | | x-40=7(-2x+2) | | x-40=7(-2x-2) | | 3x-25x-9=1 | | X=12=1/2x+20 | | -7(-2-4r)=-154 | | -3(x-4)+4x=3-9 | | x(5x-9)(2x+9)=0 | | 322=7(4-7a) | | r-2-7=-6.89 | | 7h+h=78 | | -84=-7(r+8)+3r | | 0.22(x+6)=0.2x+5.8 | | M^2+20m=3 | | 1=-3x+3x | | 1/8-c=4/5 | | 2+y=-7+-y | | ∠B=4x+38∘∠B=4x+38 | | 4m+3=6m+3-2m | | 7x+59=3x+23 | | 4m+3=6m+3-2m | | 2(x-3)^2-14=18 | | 9=8+3a-8 | | X^2x+6-7=0 | | 6z+7=2z35 | | 183=5(6x+3)-6x |

Equations solver categories