4x+1/4*2x=63

Simple and best practice solution for 4x+1/4*2x=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+1/4*2x=63 equation:



4x+1/4*2x=63
We move all terms to the left:
4x+1/4*2x-(63)=0
Domain of the equation: 4*2x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
4x*4*2x-63*4*2x+1=0
Wy multiply elements
32x^2*2-504x*2+1=0
Wy multiply elements
64x^2-1008x+1=0
a = 64; b = -1008; c = +1;
Δ = b2-4ac
Δ = -10082-4·64·1
Δ = 1015808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1015808}=\sqrt{16384*62}=\sqrt{16384}*\sqrt{62}=128\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1008)-128\sqrt{62}}{2*64}=\frac{1008-128\sqrt{62}}{128} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1008)+128\sqrt{62}}{2*64}=\frac{1008+128\sqrt{62}}{128} $

See similar equations:

| 0x-14=7x+25 | | X+1/2x=30 | | -5/3y=5/6 | | (10x+50)=170 | | 20b^2-15b=18 | | 7x(-7=15) | | 6^x=128 | | 150=2x+100 | | 12+2x=15-x | | -5=8/3y | | 70=20+2p | | 32-3x=-5x+64 | | F(x)=9/9x+11 | | 3/8u=-8/7 | | 128+1/3x=180 | | 128+1/3x=18 | | 4/9v=-7/5 | | 0.2x+153.2=180 | | 3x+6=-5+2 | | u/2=u/3+3 | | 126+3x=180 | | x=312+0.49639999999999/1 | | 12x^2+28x=120 | | X^2-27+5x=0 | | x^2-30x=-210 | | 5-2n=10n= | | -3=-7w | | -8v+6(v-7)=-24 | | 7/6=-9/2x | | 5/3=3/5y | | -7/8=-7x | | -7y=-1/3 |

Equations solver categories