4x+2x(x-5)=3(2x-4)

Simple and best practice solution for 4x+2x(x-5)=3(2x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+2x(x-5)=3(2x-4) equation:



4x+2x(x-5)=3(2x-4)
We move all terms to the left:
4x+2x(x-5)-(3(2x-4))=0
We multiply parentheses
2x^2+4x-10x-(3(2x-4))=0
We calculate terms in parentheses: -(3(2x-4)), so:
3(2x-4)
We multiply parentheses
6x-12
Back to the equation:
-(6x-12)
We add all the numbers together, and all the variables
2x^2-6x-(6x-12)=0
We get rid of parentheses
2x^2-6x-6x+12=0
We add all the numbers together, and all the variables
2x^2-12x+12=0
a = 2; b = -12; c = +12;
Δ = b2-4ac
Δ = -122-4·2·12
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{3}}{2*2}=\frac{12-4\sqrt{3}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{3}}{2*2}=\frac{12+4\sqrt{3}}{4} $

See similar equations:

| -2x+19=3(x-7) | | 3(4x+18)=2(6x+12) | | -7(v+5)+3=-88 | | 4x+x+7=17 | | -1/3=2/3x+5/3 | | 3r+6(r-3)=-90 | | -4(2x+5)+5x-1=−48 | | 4x+5=6x11 | | -7v+-35+3=-88 | | -7n-10=-122 | | 9x-3(x+6)=2 | | 3⋅(y+2)−5⋅(y+3)=1 | | 2b+8b-6b-3b=21 | | 9x=14x-15 | | 5-3x+1=18 | | 34=14v-15 | | x-3-1=9 | | 2x+103x+20=180 | | 11z-11=77 | | x²+7=42 | | 173=127-u | | 3/4m+3=7 | | n/6=20.7/5.4 | | 6x+6=4x-20 | | 2(3y-6)=242 | | 7x-1=-6x-1 | | 4(x=6)=2-6(x=3) | | -35=3(6b+6)-(5-6b) | | 10(2+3x)=110 | | 3/4q-7=15 | | 173=126-u | | 9+4x=-3(1-2x) |

Equations solver categories