4x+3(3x+1)=6x(2x+1)

Simple and best practice solution for 4x+3(3x+1)=6x(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+3(3x+1)=6x(2x+1) equation:



4x+3(3x+1)=6x(2x+1)
We move all terms to the left:
4x+3(3x+1)-(6x(2x+1))=0
We multiply parentheses
4x+9x-(6x(2x+1))+3=0
We calculate terms in parentheses: -(6x(2x+1)), so:
6x(2x+1)
We multiply parentheses
12x^2+6x
Back to the equation:
-(12x^2+6x)
We add all the numbers together, and all the variables
13x-(12x^2+6x)+3=0
We get rid of parentheses
-12x^2+13x-6x+3=0
We add all the numbers together, and all the variables
-12x^2+7x+3=0
a = -12; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·(-12)·3
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{193}}{2*-12}=\frac{-7-\sqrt{193}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{193}}{2*-12}=\frac{-7+\sqrt{193}}{-24} $

See similar equations:

| 8x+104-(x*x*x)=-15x+20 | | 3^(2x-9)=81 | | -4z+7=-11z=21 | | 40=16+2x | | x-10/14.50=-4 | | +4y=3y- | | 8-2x=18-5x | | 3/5(15x-10)=12x–3 | | (7x+1)/2=11 | | 8-8x=16-6x | | 3(2x-3x)=17(2x+11) | | 1/2(6x+8)+4x=4/5(5x–20) | | 8y+2y-4y=30 | | 7x+5x+15=2x+7x | | -5=-8x+11 | | 3(q-7)=27q= | | x.2x+3=7 | | 4x+7=15x-13x | | w/6-8=-13 | | 8q+20=36 | | 100=12(x+4) | | (10x)=(9x-5) | | 3y-4,3=-12,4 | | Y=x2-62x+952 | | -4t^2-3t+3=2t+4 | | (x+9)*(4x-8)=0 | | (2b-20)+b=70 | | 6x-4=-4+6x  | | 4(5x-10)=44x | | 4/9x=0 | | 6(x-2)+5x=10 | | -70=7(u-8) |

Equations solver categories