If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+3x^2=102
We move all terms to the left:
4x+3x^2-(102)=0
a = 3; b = 4; c = -102;
Δ = b2-4ac
Δ = 42-4·3·(-102)
Δ = 1240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1240}=\sqrt{4*310}=\sqrt{4}*\sqrt{310}=2\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{310}}{2*3}=\frac{-4-2\sqrt{310}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{310}}{2*3}=\frac{-4+2\sqrt{310}}{6} $
| 10=3p+5 | | 4*(2*9)=(4*n)*9 | | Y=-1/2x+5/3 | | 6k-k-k+k-3k=18 | | 169x+8x=25 | | -3p+10=-10-p | | 3x+14=21x+32 | | 0.2x-8=-8 | | 7(7x+2)=49x-10 | | 17b-9b-5b=15 | | 32-2c+4=2c+4+c | | w+7.8=9.43 | | 7(3x+2)-5x=142 | | -5=2u+5 | | -0.6+0.2x0.8x-1.8=0 | | 25x+8x=169 | | 2(2y-9)=2(y-3) | | 2/3(9s-3/2)=2(0.45+5)+1.2 | | 4c-10=10+9c | | 6d-2d=20 | | 5+15x=16x-3 | | x+x=324 | | 5p-14=11 | | 7x-6(x-7)=53 | | 120x=150x+4 | | x+2x+2x+4=84 | | 1.5x-7=0.25x+8 | | 113-x=226 | | (12x-2)+(5x+7)=180 | | 2q+5-5q=-7-q | | 3(4+5)-2(3r+4)=7 | | 2/3(9s-3/2=2(0.45+5+1.2 |