4x+x(2x-10)+(x+30)+(x+70)=180

Simple and best practice solution for 4x+x(2x-10)+(x+30)+(x+70)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+x(2x-10)+(x+30)+(x+70)=180 equation:



4x+x(2x-10)+(x+30)+(x+70)=180
We move all terms to the left:
4x+x(2x-10)+(x+30)+(x+70)-(180)=0
We multiply parentheses
2x^2+4x-10x+(x+30)+(x+70)-180=0
We get rid of parentheses
2x^2+4x-10x+x+x+30+70-180=0
We add all the numbers together, and all the variables
2x^2-4x-80=0
a = 2; b = -4; c = -80;
Δ = b2-4ac
Δ = -42-4·2·(-80)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{41}}{2*2}=\frac{4-4\sqrt{41}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{41}}{2*2}=\frac{4+4\sqrt{41}}{4} $

See similar equations:

| -3(7x-8)+7x=4(x+4) | | 0-2y=13 | | 11(2-6y)+6(-3y+1)=7 | | (x-7)^3/4=8 | | 4.3×h=81.7 | | (3+6i)+(7-8i)=0 | | 3(m-5)-m=3m-5 | | -2(c-59)=-76 | | 9n—5—3n=61 | | 3.45x+2.7=5 | | (x-7^3/4=8 | | x-5/6=7x+1/2 | | -2(w+2)=6w-9+3(2w+5) | | 12=6k/8 | | 10x+3=12x+1+5 | | d/7-2=1 | | (x-7)^(3/4)=8 | | 11+r,r=7 | | 6x−3(5x+2)=4(1−x) | | 2b-4=2b-4 | | w^2+3w=1/3(w^2+3w)+1/4(w^2+3w)+1/5(w^2+3w)+9+1/6(w^2+3w) | | z/3-3=4 | | 10+p3=1 | | 22x+25.75=47x+19.50 | | 6(k-87)=42 | | P=-27;1=p3+10 | | -3(2x-1)+3x=8+3(3x-1) | | 0.062=0.06m—0.01 | | Y=60x+700 | | U-5=4(v-1) | | 2.40+0.20+(2.00+x)=10 | | w^2+w=1/3 |

Equations solver categories