4x-(x+1)=(2x-3)(2x+5)

Simple and best practice solution for 4x-(x+1)=(2x-3)(2x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x-(x+1)=(2x-3)(2x+5) equation:



4x-(x+1)=(2x-3)(2x+5)
We move all terms to the left:
4x-(x+1)-((2x-3)(2x+5))=0
We get rid of parentheses
4x-x-((2x-3)(2x+5))-1=0
We multiply parentheses ..
-((+4x^2+10x-6x-15))+4x-x-1=0
We calculate terms in parentheses: -((+4x^2+10x-6x-15)), so:
(+4x^2+10x-6x-15)
We get rid of parentheses
4x^2+10x-6x-15
We add all the numbers together, and all the variables
4x^2+4x-15
Back to the equation:
-(4x^2+4x-15)
We add all the numbers together, and all the variables
3x-(4x^2+4x-15)-1=0
We get rid of parentheses
-4x^2+3x-4x+15-1=0
We add all the numbers together, and all the variables
-4x^2-1x+14=0
a = -4; b = -1; c = +14;
Δ = b2-4ac
Δ = -12-4·(-4)·14
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-15}{2*-4}=\frac{-14}{-8} =1+3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+15}{2*-4}=\frac{16}{-8} =-2 $

See similar equations:

| 41=5v+11 | | 3(f+2)+9=19=13+5f | | 44=5v+11 | | 13=42-x | | 2.2x+9=17.8 | | 18(2x+4)=1 | | -4x+10.5=20.5 | | x+0.06x=22.26 | | (z/2.5)+12=18 | | 29x-515=-14 | | 4x-(3+3x)=2(6+x) | | 8.16=-2.6c+.1 | | w/6-6=8 | | 9.00+350x=20.00 | | 3x+2+10=40 | | -16+d=-6 | | x-0.3x=25.15 | | -3x+150=5x | | 3c-6=-2c+9 | | 3x^2+15x−18=0 | | (-6x)+1=(-11) | | 2z=30+17z | | 2×18^10r-3-1=73 | | 15=4u | | x-0.06x=22.26 | | 2m-26÷3=5m | | 0.4x+9.2=10* | | 4x+22=(-34) | | 60+3x=66 | | 8×3^n-1-21=51 | | 45+t+50+t+29=180 | | 2-x/5=-1 |

Equations solver categories