4x-1=(3x-2)(3x-2)

Simple and best practice solution for 4x-1=(3x-2)(3x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x-1=(3x-2)(3x-2) equation:



4x-1=(3x-2)(3x-2)
We move all terms to the left:
4x-1-((3x-2)(3x-2))=0
We multiply parentheses ..
-((+9x^2-6x-6x+4))+4x-1=0
We calculate terms in parentheses: -((+9x^2-6x-6x+4)), so:
(+9x^2-6x-6x+4)
We get rid of parentheses
9x^2-6x-6x+4
We add all the numbers together, and all the variables
9x^2-12x+4
Back to the equation:
-(9x^2-12x+4)
We add all the numbers together, and all the variables
4x-(9x^2-12x+4)-1=0
We get rid of parentheses
-9x^2+4x+12x-4-1=0
We add all the numbers together, and all the variables
-9x^2+16x-5=0
a = -9; b = 16; c = -5;
Δ = b2-4ac
Δ = 162-4·(-9)·(-5)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{19}}{2*-9}=\frac{-16-2\sqrt{19}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{19}}{2*-9}=\frac{-16+2\sqrt{19}}{-18} $

See similar equations:

| 3(w+13)=-12 | | (5x+11)+(3x+29)=180 | | 3(k-18)=3 | | 7x+2+3=19 | | 8(a+2)+2(2+3a)=8 | | 3b−39=  −78−78 | | 4x-7=12x+10 | | 9x-1=49 | | y=8 ÷ 2+ 11 | | 6+a2=6+2a​ =  28 | | (11-4)(5)=x | | 6+2a​ =  2828 | | 3.2-x=126.9 | | 0.1-x=0.5x | | 6x+10=50+4x | | F(n)=7n+3 | | 2=(-14/19)x | | 7-8c=c+3(2-3c) | | 14=k(-19) | | 5b+6-2b=6(1-3b) | | 14a=392 | | 20−3n=7n. | | 20−3n=7n | | 26=n/14 | | (a-8/a)*(a-6/a)=10 | | t2=–4t–5 | | 7x2–4x=0 | | 21=–7c | | -0,4x=-2 | | 7w2–4w=0 | | x/12=6/ | | (7x-26)+(4x+43)=180-90 |

Equations solver categories