If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x-2+6x=x2
We move all terms to the left:
4x-2+6x-(x2)=0
We add all the numbers together, and all the variables
-1x^2+10x-2=0
a = -1; b = 10; c = -2;
Δ = b2-4ac
Δ = 102-4·(-1)·(-2)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{23}}{2*-1}=\frac{-10-2\sqrt{23}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{23}}{2*-1}=\frac{-10+2\sqrt{23}}{-2} $
| -2y+92=2(2y-77) | | 4+1.25x=1x+1.25x | | 6-4x/3+5=2x | | w+5=2(w-7) | | w+8=2(w-30) | | -10y-17=20+7y-3 | | z-44=2(z-61) | | 35-25x=200 | | 10(2x-4)=100x | | -10y-17=10+7y-3 | | p=2(p-16) | | 18w=9+19w | | s+68=2(s+24) | | 18w+9=19w | | 7m-11=-2+8m | | p+10=2p | | v-202=96 | | -8j+8=-10j | | z-(-698)=731 | | -6r+3=-4-10r-6r | | x+-19=71 | | v-42=2v | | 2.5b+.5b=−122.5b+.5b=-12 | | V-8=2v+10+5v | | 20+9z=-10z+12 | | 33=-3t | | 4f-1f=6 | | 8h=-9+7h | | 3-6v=-5v-10+5 | | -7x+(-42)=14 | | -10-7f=-5f+2 | | 3-10b=-7b+3 |