4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)

Simple and best practice solution for 4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4) equation:



4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)4x-5=0.75(8x-4)
We move all terms to the left:
4x-5-(0.75(8x-4)4x-5)=0
We calculate terms in parentheses: -(0.75(8x-4)4x-5), so:
0.75(8x-4)4x-5
We multiply parentheses
24x^2-12x-5
Back to the equation:
-(24x^2-12x-5)
We get rid of parentheses
-24x^2+4x+12x+5-5=0
We add all the numbers together, and all the variables
-24x^2+16x=0
a = -24; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-24)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-24}=\frac{-32}{-48} =2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-24}=\frac{0}{-48} =0 $

See similar equations:

| 48=w+27 | | 3x+10=6.5x-45 | | -6-(2a-7)=4a-41 | | -12-2x=2+5x | | 15=u/3+12 | | 8c=–5+7c | | m=2+2/7 | | -h=-9.4 | | 9x-7=7, | | -4f+8=-6-2f | | g-8=46 | | 6/9=72/x | | u+1.05=19.35 | | 6x-9-x^=0 | | 2n+10=8n-2n-10 | | -8(-5+4x=104 | | -3(m+7)=15 | | 6x−21=5x+17−(−x) | | -5y-29=7(y+1) | | m÷3.24=1.5m= | | 7(a+4)-10=3a+20+4a-2 | | 24=4(4w-2) | | c/2=3.1 | | 4+5r+7r=40 | | c+45=64 | | 100-x10=15x | | 7.11=n+3.11 | | 6x^=1-x | | -x+51=3x-117 | | 3b+4=10,5b+4 | | 42.5+x+0.3=140.26 | | 8x=72,x=9 |

Equations solver categories