4x-5x(x-3)=3(x+1)-4

Simple and best practice solution for 4x-5x(x-3)=3(x+1)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x-5x(x-3)=3(x+1)-4 equation:



4x-5x(x-3)=3(x+1)-4
We move all terms to the left:
4x-5x(x-3)-(3(x+1)-4)=0
We multiply parentheses
-5x^2+4x+15x-(3(x+1)-4)=0
We calculate terms in parentheses: -(3(x+1)-4), so:
3(x+1)-4
We multiply parentheses
3x+3-4
We add all the numbers together, and all the variables
3x-1
Back to the equation:
-(3x-1)
We add all the numbers together, and all the variables
-5x^2+19x-(3x-1)=0
We get rid of parentheses
-5x^2+19x-3x+1=0
We add all the numbers together, and all the variables
-5x^2+16x+1=0
a = -5; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·(-5)·1
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{69}}{2*-5}=\frac{-16-2\sqrt{69}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{69}}{2*-5}=\frac{-16+2\sqrt{69}}{-10} $

See similar equations:

| 12x-(4x-2)=58 | | 70000+1200r=1,000,000 | | F(x)=-2x2+9x=1 | | z−116=236 | | 4+4(y-7)=25 | | 2(3x+2)=4(x+10) | | 6x-4(x+8)=8x-20 | | 5(2x−3)+4x=13 | | 8(1+6x)=6x+8 | | 4x+10-6x=2(x-3) | | 2(3x-20)=2(x+4) | | 35=15x-5 | | 2y=-12-5(5y+3) | | 6+15x=81 | | 5x+3(5x+2)=26 | | 9x-4=1/27 | | 4/8=1/y | | n+3=-7 | | 3✓9x-5=27 | | 3/21=1/y | | 40+25x=115 | | F(5x)=3x+8 | | 3√9x-5=1/27 | | 0.625=x/8 | | 20/x=2/3 | | W=7x=2 | | 19x=-40 | | 2x(-3+3)-4(x+3)-2=3x(2-2)+3(x-2)+12 | | 3a+6=4a-10 | | 3a+6=4a-1 | | 2.45x+1.5=3.7x-3.25 | | 25/5=5x |

Equations solver categories