If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x-9)/12=3x+7)/12
We move all terms to the left:
4x-9)/12-(3x+7)/12)=0
Domain of the equation: 12-(3x!=0We calculate fractions
We move all terms containing x to the left, all other terms to the right
-(3x!=-12
x∈R
4x+()/(-36x+12)-3x/(-36x+12)+7*12=0
We add all the numbers together, and all the variables
4x+()/(-36x+12)-3x/(-36x+12)+84=0
We multiply all the terms by the denominator
4x*(-36x+12)-3x+84*(-36x+12)+()=0
We add all the numbers together, and all the variables
-3x+4x*(-36x+12)+84*(-36x+12)=0
We multiply parentheses
-144x^2-3x+48x-3024x+1008=0
We add all the numbers together, and all the variables
-144x^2-2979x+1008=0
a = -144; b = -2979; c = +1008;
Δ = b2-4ac
Δ = -29792-4·(-144)·1008
Δ = 9455049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9455049}=\sqrt{81*116729}=\sqrt{81}*\sqrt{116729}=9\sqrt{116729}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2979)-9\sqrt{116729}}{2*-144}=\frac{2979-9\sqrt{116729}}{-288} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2979)+9\sqrt{116729}}{2*-144}=\frac{2979+9\sqrt{116729}}{-288} $
| 3(y+8)=2y-6 y=30 | | 34+x=2 | | x/16=14/32 | | 3b-2=-10b-5 | | 6(5m-4)=2(9m+24) | | f+10=–9f | | 6(5m-4)=(9m+24) | | X+7=21x= | | 6(1-2k)-4K=21-k | | 3x+5+3x+5+2x-4=180 | | 5x+8=-2x+3 | | 9x+4-x=4(2x+10 | | 9m-19=3m+1 m=10/3 | | -8=7-5v | | 4x+2+11x-6=86 | | 7/5=42/x | | -a+10=9 | | 6x-3(3x+8)=16 | | 0.5x1.8-2.2x=-3.64 | | g/14=9 | | -3(8m-18)=6(-4m+3) | | k-68=75 | | b+43.87=58.92 | | -b/8-10=4 | | x●(-5)=60 | | h+351=654 | | -13=3+h | | t+33=992 | | −4x=92 | | n/31=27 | | 3.6=-x/3 | | −6.8=g/2.1 |