If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x-6=0
a = 4; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·4·(-6)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*4}=\frac{4}{8} =1/2 $
| 7x+10=5x-30 | | 3x-(2x+2)=7 | | -36=-9(s-91) | | 8-2c=6-3c | | 0=f(3) | | -81=19-2x | | -9x3=60 | | -t1=19 | | 2x(x+7)=17 | | -12c=-30 | | 3/8a+14=8 | | 5b,b=2 | | -1+-14x=12x+17 | | 4x-7,x=5 | | 124=14-6x+3x | | 5x-2=5+3x+7 | | 4w=w+60 | | 5/√x=0 | | F(4x)=4x^2+3x-4 | | 17x+8=12x-4=42 | | x+70+110=360 | | x+70+110=180 | | 2x2-13x-45=0 | | p+60=7p | | x^2+16x40=0 | | 7p=9p+60 | | 3j+10=7j+2 | | 8y-4=8 | | .20x300+.14=246 | | 8y-2=8 | | 4x+130=9x-10 | | e=3(180-e) |