If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x+5=0
a = 4; b = 12; c = +5;
Δ = b2-4ac
Δ = 122-4·4·5
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8}{2*4}=\frac{-20}{8} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8}{2*4}=\frac{-4}{8} =-1/2 $
| -161+15x-6x=73 | | x+4(x+3)=x | | -7/3=-1/4u-9/5 | | 20=4×x | | 5/6x-2/3=2/3x+6+1/6x | | 35=x/94 | | 4x-12.9=x | | 7x+4x-34=68-6x | | 1/4v=11/1 | | x-2/5=x+6/4 | | 11x-9=10x+10 | | x-2-5=x+6/4 | | (k-5)(k+8)=-42 | | 2x-1/3x+2=2/3 | | -3x+13+4x=5+x+8 | | 3x=7/21-2x=1/21=5 | | 8x+6=6x-1 | | 5-2/3x=1/9+19 | | 4/7x-2/3x=8 | | 1,0475^x=2 | | (x+9)(x-3)(x+5)=0 | | 5b+b=32 | | 12d−7=41 | | 1/3y+y=68 | | (-1÷2)+(3÷4)x=0 | | f(8)=-0.4(8)+16.3 | | Y/3+y=68 | | x-15+2x=360 | | 1/3(x+1)=2/9×+7/9 | | 3/4x=4/3 | | 4c/c=6 | | 2(3x+5)=-3(x+5) |