If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x=0
a = 4; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·4·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*4}=\frac{0}{8} =0 $
| -r/3+7=-2 | | -6p+7=3(3p-3)-4(-10+4p) | | -6p+7=3(2p-3)-4(10+4p)- | | 2(12+3+8)-6=6x(3) | | 4(x-3)5=1 | | x+2,121=14,165 | | 5x-1=4(x-9) | | −4/5(y−4)=−1/6(y+34) | | 1/5(2f-3)+1/6(f-4)+2/15=0 | | −45(y−4)=−16(y+34) | | t÷4-1=12 | | a÷5+8=15 | | 5x-1=(x-9) | | 5+5x=204 | | X^2+x-690=0 | | 18x-51=9(4x+5)-6(3x-10) | | 1/4(2x-1)+3=1/2 | | 5(x+2)−10=15 | | 5(x+2)−10=15. | | -2(x+6)+3=6(x+4)+3 | | −y+11=6y+18 | | 3x-7(9-x=12 | | 175+15b=595 | | 15x-7+x+11=180 | | 8+7+x=16 | | 6y+12=212 | | 2+3/4=1+2/3y+5/6 | | y/4-2=y/5 | | 150/20=3/x | | 1.54x-3.85=3.16-2.58x | | 5x+6=10x-9 | | x²-7=x²-6x-7 |