If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15x+12=0
a = 4; b = 15; c = +12;
Δ = b2-4ac
Δ = 152-4·4·12
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{33}}{2*4}=\frac{-15-\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{33}}{2*4}=\frac{-15+\sqrt{33}}{8} $
| 4x^2+3x^2-10=18 | | 4x+7=-13+8x | | 3x+x/4=18 | | 5x-29=11+3x | | 7(3x+6)-11=(x+2) | | ⅔x-1=x+7 | | ½x+6=-4 | | y3+4=−2 | | 4x+5x-16=48-7x | | 2x2+2x-40=0 | | 5x2=80 | | x3-1=0 | | -5(n-5)=-6(n-6 | | 12+4(x−1)=3(x+2)+2 | | 25x+15=100 | | 3x5-7=x | | 2×+y=41 | | 18x-8=4x+6 | | 9−3(4−11x)=(5x+2)⋅6−12 | | 0=x^2+6x-84 | | (i+1)^15=20i | | 2y^2-4y=-2 | | 9+9z=9 | | x+2/2=x-4 | | 2(5+d)=2-4d | | 2/4x=3/4 | | -40x+-1.6x+2.7=-4.6x+2.7 | | 8/u-(2)=6- | | x-5/6=35 | | 8/u-(2)=6 | | 4(0.2x-50=12 | | 2(x+10)+6x=8x-20 |