If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16=32
We move all terms to the left:
4x^2+16-(32)=0
We add all the numbers together, and all the variables
4x^2-16=0
a = 4; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·4·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*4}=\frac{16}{8} =2 $
| 2y−7+y=8 | | u-4.7=9.9 | | 9b+6−5b=18 | | -2x+2.8=48.6 | | −2+45x=6 | | 9p^2-5=6p | | (9x-3)+(5x+2)=180 | | 9y−7=7y−11 | | 1/2s-4+3/4s+1/8-s3=0 | | 4x-(-5)+2+2x=3x+3+3x | | 3f+6=-3 | | 60+28.50(x)=36(36) | | 3(x-1)+2(3x+1)=-(3x+1) | | 60+28.50(x)=36(12) | | 2x^2+7x+3=2x2+7x+3 | | –15k+10k+–19k−–20k=20 | | 2(x–2)+7x=12(6x–2) | | 4r^2-9r+12=0 | | 4u-9=-13 | | 4x-5+2+2x=3x+3+3x | | 34-1(3c+4)=2(c+6)+c | | 15.44+0.12x+0.36=16.19-0.16x | | 172-w=55 | | 6-3/4+1/3=1/2x+5 | | 2x^2+13=-8x+5 | | 24-15=g | | 258=28-v | | -2x+3=-3(x-1)+1 | | x+66+60+60=180 | | 2x^+2=402 | | 2(4p+8=128 | | 2-1/2y=3y+16 |