If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x+15=0
a = 4; b = 16; c = +15;
Δ = b2-4ac
Δ = 162-4·4·15
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4}{2*4}=\frac{-20}{8} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4}{2*4}=\frac{-12}{8} =-1+1/2 $
| x2-2x+7=-7x+1 | | x2-2x-8=7 | | 8x-3x+87=8x+45 | | x2-6x-4=-4x+4 | | 42-5x=76 | | 4(3x-2)-3=-4x+37 | | 2(2x+6)+x+8=180 | | 2-x=13+7x | | -91=3v+6v-9 | | -6x-33=x | | 6x-32=64 | | 3(x+5)=-3x-27 | | 2y=-5+4 | | 3(7x+5)=4x+49 | | 3(7x+5)=4 | | 5x-35=3(3x-5) | | 2(3x-2)+4=4x-14 | | x+4=2(x+1)-9 | | 56y=11(5y+29) | | 191=-u+130 | | x+16=2x+5 | | 99=-u+264 | | 5(2x-4)=5x-10 | | 5x+7=-2x+112 | | 3x+1=2(3x+2) | | -2x+29=3(4x+5) | | 99-w=269 | | 6x-34=8 | | 33=248-v | | -2x-48=5(x+3) | | m–82= 1 | | X^2-7x+12=4x^2+5x-3 |