If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x=20
We move all terms to the left:
4x^2+16x-(20)=0
a = 4; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·4·(-20)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24}{2*4}=\frac{-40}{8} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24}{2*4}=\frac{8}{8} =1 $
| Y=-4x-13(-5,) | | 4(b-5)=40 | | (-8.5)•(-3)=a | | (120/x)=(50/60) | | 120/x=50/60 | | -13=w/5-8 | | 37.68=2×3.14r | | 1.37b−3.69=7.55 | | -35=-5n | | .33t-2=0 | | 11/10-(5x-2)=1/4×-12 | | (1/3)t-2=0 | | .75z+8=14 | | -1-6c=-19 | | -4b+6=-22 | | -0.2x+0.05=1 | | 5y+7=-21-2y | | (x)(x+2)=161.5 | | 2(c+6)=54 | | 2(c-6)=54 | | x+x^2=0.184 | | 3+11y=23+y | | 5y-2=15y-42 | | 5(b-2)=50 | | 2(b-5)=50 | | 6y+28=15y-62 | | 3(p+9)=18 | | 3y-5=y+3 | | 40+2x=100+x | | 4r+12/8=2r-6/2 | | .25x+.25x+x+x=360 | | 0.8m=1.12 |