If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x=5
We move all terms to the left:
4x^2+16x-(5)=0
a = 4; b = 16; c = -5;
Δ = b2-4ac
Δ = 162-4·4·(-5)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{21}}{2*4}=\frac{-16-4\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{21}}{2*4}=\frac{-16+4\sqrt{21}}{8} $
| -30+(-15)=2x+x | | 6x-13x=71-51 | | 3x+3-2x=8-20 | | 8-2n=34 | | 1/6x3/20x5/42x7/72xx=1/384 | | m-16=25 | | 2n+9=22 | | x+x+85+55=360 | | 12x-47=-28 | | -17x=5-(-12) | | 5x+14=8x+12 | | 2(10y+5)=90 | | 4x=15-35 | | 190+43=24-x | | 12233x2323=9 | | F(x)=I3x+2I-2 | | u/3+10=21 | | |2x-3|=12 | | 2(17y-10)=13y+12 | | f=10-20 | | (4^2x-4)/(2^x-2)=126 | | -15g+10=-16g+18 | | Y=12x+89=Y=40x+61 | | -4=-7x+3(x+8) | | 4(2x-10)=-24 | | a+0.5a-6=21 | | 5×+y=21 | | X+3/4=2x-1/6 | | Y=40x+61 | | Y=12x+89 | | X-3(2x=2)=7x-3 | | x+25.25=40.00 |