If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+17x+15=0
a = 4; b = 17; c = +15;
Δ = b2-4ac
Δ = 172-4·4·15
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-7}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+7}{2*4}=\frac{-10}{8} =-1+1/4 $
| 3(1-3k)=-6-6k | | 5/7×w=350 | | −4(32x−12)=−15 | | -19-17s=20-13s-17s | | 21+2x=-2x+3(5x-4) | | 5/7w=350 | | X2+7x+19=9 | | -9v-3+10=8(8-v)-(1+v) | | 2.74=0.9y+0.04 | | 4-14w=-13w-10 | | 6/7x+1/4=4/9-1/7x+4/9 | | -8+3x=x+4+4x | | 11z-5=9z+ | | 4x+23=9x-38=180 | | X2-12x+43=3x-1 | | 2.5-0.04x=0.58 | | 6(3x-4)+2x=56 | | -17+3h=-14h | | -2+2b-2b=3b+4 | | 5^x=118+7 | | s^2-6s=20+2s | | 3-2(b-2=2-7b | | X2-5=2x+3 | | 10x+4(x-20)=7(4+x)+7x | | 3x+21=-4x-7 | | 4.5(8-x)+36=102-25(3x+24) | | -3-3n=n-3+6n | | -4y+10=y | | 5x2+25x+30=0 | | X2+x+4=10 | | -6m-m=10+3m | | |7+g|=14 |