If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20=40
We move all terms to the left:
4x^2+20-(40)=0
We add all the numbers together, and all the variables
4x^2-20=0
a = 4; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·4·(-20)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*4}=\frac{0-8\sqrt{5}}{8} =-\frac{8\sqrt{5}}{8} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*4}=\frac{0+8\sqrt{5}}{8} =\frac{8\sqrt{5}}{8} =\sqrt{5} $
| 26=j/27 | | 5=-1+3n | | –5−5s=–10s | | z/9.9=0.88 | | –13+9f=10f | | m(4)=48 | | -2(x-5)-(-3x+9)=-7 | | 15=3=2x | | 3p=-7 | | 63-u=293 | | x-68+x+48=180 | | 4(x+7=36 | | 3(8+8p)=−7p−162 | | 0.2=v/1.75 | | 4q=–8+3q | | 50y=60 | | s/16=9 | | -3+8(1-x)=-(5+7x) | | -9(w+6)=-207 | | 109=-3+8b | | 3n-6=-21+4n | | 1=d/143 | | 24/a=72/29 | | 5w-3(w-3)=-6+6w-5 | | 4x-180=14x+50 | | -3(2x+2)=-(2x-2) | | n/0.2=3.5 | | 4p+5.7=13.7 | | 50=-3x+8 | | -3x-57=-6x+15 | | 5.9+9.9w-w=9.7 | | 10+5(3x+3)=25 |