If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x+21=0
a = 4; b = 20; c = +21;
Δ = b2-4ac
Δ = 202-4·4·21
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8}{2*4}=\frac{-28}{8} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8}{2*4}=\frac{-12}{8} =-1+1/2 $
| 8m12.6+4m=9.6+8m | | -7p=-9-6p | | 3(d+15)=8-4d | | 1/3(90x-12)=1/2(8x+10) | | (5+6i)(-4+7i)=0 | | 30x+18=40x+200-20 | | 1/5x-7=1/2 | | -4d=-5d+7 | | 3a-4=8+a | | 22n-54=144 | | 3y+-6=3 | | -16-7q=-4-3q+16 | | 3+4v=6(5-7v) | | 7=-4(p+10)-3(p+2/3) | | 6+14=-70-6x | | 3x+7=12.7 | | 246+-u=154 | | 4/7y=-3 | | -7-3c=-2c | | |29-7x|=4 | | 2(t+)=10 | | -20-15k=20-19k+16 | | 2x+8+2x+2x+7=2x+3x+8+2x | | 4=-8z-7+8z | | -7t/3=49 | | 130+8x+4+130=180 | | -78=-6h+(7-3h | | 5(x-5)+4=-31 | | (9+3i)-(-2-7i)=0 | | 3y+0.4=9.4 | | 6(x−2)=−48 | | O.2m+10.5=15 |