If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-24=0
a = 4; b = 20; c = -24;
Δ = b2-4ac
Δ = 202-4·4·(-24)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-28}{2*4}=\frac{-48}{8} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+28}{2*4}=\frac{8}{8} =1 $
| 5n+19n+10=0 | | -3(r+9)+8=-10 | | F(x)=(x.9)+1 | | 1/2(4x-1)=8 | | 6x-35=6x28 | | 2=w-87/5 | | 5x+7=-5+11 | | 4y+7=+5 | | 9w-12=-21 | | -x+9=-5x+5 | | 40/d=-1 | | x=+-3x | | 2x-60+9x=6 | | c+61/2=-5 | | -12+4y=16 | | -2x-7=-x-37 | | 9(x+3)=-3(x-5) | | -5(y-16)=9y+10 | | 7(r+6)+3=87 | | -6(b-14)=18 | | -36/h=9 | | -65=5(u+16) | | 12.6w=8.3 | | 30=-6/5u | | 7/3y-2/5y=1 | | 2(-7p-6)+9p=-17 | | -142=4x+7(-x-16) | | 3(z+16)=-12 | | -2(-7p-6)+9p=-17 | | 3-s=-2 | | b+20/6=6 | | 100f=(100)(0.2727272) |