If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x=0
a = 4; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·4·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*4}=\frac{-40}{8} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*4}=\frac{0}{8} =0 $
| -2(w+(-3))=0 | | x+(x*2)+(x-7)=77 | | (-2x+9/6)+(2/3)=(-5x/3) | | 10z+4z-10z-1=15 | | 30=9x+15 | | 1/2x9=9/2= | | 4(q-17)=12 | | 0.08x-0.05x=250 | | 41/2−51/3÷(20x−142/3)=15/6 | | -9u+u=16 | | 5.14x+25.7=51.4 | | =x | | 3(z-14)=6 | | -28.9j-48.4=376.43 | | 3+8(9-(8-2))=x | | 9n-7n=18 | | 11/9(.5)=x | | 624.06=y+624.06 | | 6(5+1)=4s+8 | | 2y+3/4-6y=1 | | 3x+3(-x+3)=x | | 17q+6q-19q=8 | | 51n+90=50+2+11 | | 7(3+7(2-4))=x | | x-5.1=(-3.1) | | 9/2+(-16/3)/(20x-44/3)=11/6 | | 20=2(z+2) | | 108-u=201 | | 0+88=r | | x+(x*2)+(x+7)=77 | | g+(-5)=27g= | | 37x=+9x+4 |