If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x+12=0
a = 4; b = 24; c = +12;
Δ = b2-4ac
Δ = 242-4·4·12
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{6}}{2*4}=\frac{-24-8\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{6}}{2*4}=\frac{-24+8\sqrt{6}}{8} $
| 0=-15y | | –s−10=2s+8 | | x^2-3x-44=x2−3x−44=-3x+5−3x+5 | | 4(r+5)+2r=110 | | 48*90=x | | X^2+3x=324 | | 4x^2/2^x=16 | | 6x+22=4x+}40 | | 5x+2-3+x+2(5+3x)=33 | | 4(x+1.50)=38 | | 4s−4=–10+5s | | 15x=519 | | m=500 | | 4(x+1.50)=26 | | (x+2)(x+3)(x-4)(x-5)-44=0 | | 4000=4(3)^x | | 4(x-9)/3=4/3x-12 | | 4x-2=2x16 | | (D^4+18^2+81)y=0 | | 4(x=3)-4=81/2x+1 | | X(2x+1)=136 | | 6x^{2}=5x-3 | | 3/4x+7/8=3x+1/8 | | b−6=14 | | 26=-1+(27x)^(3/4) | | 2x2=50x | | -18=1v-3 | | 4r^2=20r+11 | | 3·x=210 | | Y=15x+498 | | 2(-7x+5)+2x=3(x+1)-16x | | 8r=2.1 |