If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+26x=0
a = 4; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·4·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*4}=\frac{-52}{8} =-6+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*4}=\frac{0}{8} =0 $
| -33s+21s-25s-10s+-7=20 | | 2b+9b+7b+6b-15b-8=46 | | 3y-3y+2y+4=8 | | 8p-4=3p+21 | | x/4x+7=31 | | -27s+23s=48 | | 11x+4x+3x-14x-x=18 | | 12k-9k-k+k-3=18 | | 15x6x=45 | | 6-2t=-12 | | 5k-36k-31k+5k-49=4 | | 5-3x=8x-16 | | -22v-46v-25v=-43 | | 23j+9j-23j+2j-10=23 | | 5u-u+7u-u-9u-1=25 | | -21q+8q=13 | | 3z+z+z-3z+4z+2=14 | | 17r-2r-20+15-18=-2 | | X+2x-3x+x+3x=20 | | 15p-9p-2p-2p=8 | | 9p-p-3=13 | | 2c+c-2c=11 | | Y=3x-x+5 | | 10h+4h-12h=18 | | Y=3x2-x+5 | | 6(-7x+5)=534 | | 7-7x=-6x-1 | | 0=9(k-2/5)+33 | | 3+6x=-2x+43 | | 16y-8y=8 | | 9+5x+6x=42 | | 7q-2q-q+2q-5q=14 |