If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+28x+29=0
a = 4; b = 28; c = +29;
Δ = b2-4ac
Δ = 282-4·4·29
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{5}}{2*4}=\frac{-28-8\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{5}}{2*4}=\frac{-28+8\sqrt{5}}{8} $
| x+-22=8 | | x^2-1250000=0 | | -6-5a=86 | | a-3.24=2.33 | | 13a=-41 | | 9.16b-1.29b=12.2 | | 3x2+42x=-162 | | 2x+3-2=0 | | 2x+9x1/3-2=0 | | 8(m+2)=8 | | m+2.7=3.9 | | t-2.1=3.3 | | X²+14x-240=0 | | -4q+2=-2q-8 | | -2m+9=4m+3 | | 0.5x6= | | 3x+5x=8x8x-6 | | 5m-7=2m-4 | | 15y*32=2(10y-7)-5y+46 | | P=5•2x | | 2/n=9/45 | | (x+6)(3x+12)=2(432) | | 3(x/2-4)=15 | | M=14x+3N=6x+7. | | (x-81)/9=-0.1 | | 5-(s-30)=10 | | j−211=394 | | c+177=720 | | A=9x+13B=6x+2. | | 11=p31 | | 11r=627 | | x-0.8=1.2 |