If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-58=0
a = 4; b = 2; c = -58;
Δ = b2-4ac
Δ = 22-4·4·(-58)
Δ = 932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{932}=\sqrt{4*233}=\sqrt{4}*\sqrt{233}=2\sqrt{233}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{233}}{2*4}=\frac{-2-2\sqrt{233}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{233}}{2*4}=\frac{-2+2\sqrt{233}}{8} $
| 9x-4=x+13-7 | | 9x-4=x13-7 | | 7-9x=19+3x | | Y=(x+4)/(5x-20) | | p-6/5=11/10 | | -7=-4/w+6 | | Y^2114y+25=0 | | Y^2+14y-25=0 | | 5x^2-30=90 | | Y=0.55x+3150 | | 19-2n=3 | | n-13=45 | | 5(2x+1)+3(x+15)=180 | | x+27+x/3+3+x/2=180 | | x+27+x/3+x/2=180 | | 4x+5x+4+3x+2x+2=180 | | 242+10x=360 | | (5y-2)=(4y+4) | | 9x21=20x-1 | | 13x+21=49 | | 2x-40+3x+10=180 | | 2x-40+3+10=180 | | 2x+x=180+90 | | 6x=5x+77 | | x/3+3x+18=90 | | 3.5=2x-10.5 | | 0.04x(6x-1)=0.2x+5 | | 2x-25+4x+x-5=90 | | 15+x+25=90 | | 24-x=53 | | 1+4x=79 | | 3+4x=87 |